Unsupervised Metaphor Identification Using Hierarchical Graph Factorization Clustering
نویسندگان
چکیده
We present a novel approach to automatic metaphor identification, that discovers both metaphorical associations and metaphorical expressions in unrestricted text. Our system first performs hierarchical graph factorization clustering (HGFC) of nouns and then searches the resulting graph for metaphorical connections between concepts. It then makes use of the salient features of the metaphorically connected clusters to identify the actual metaphorical expressions. In contrast to previous work, our method is fully unsupervised. Despite this fact, it operates with an encouraging precision (0.69) and recall (0.61). Our approach is also the first one in NLP to exploit the cognitive findings on the differences in organisation of abstract and concrete concepts in the human brain.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised Clustering of Hyperspectral Images of Brain Tissues by Hierarchical Non-negative Matrix Factorization
Hyperspectral images of high spatial and spectral resolutions are employed to perform the challenging task of brain tissue characterization and subsequent segmentation for visualization of in-vivo images. Each pixel is a high-dimensional spectrum. Working on the hypothesis of pure-pixels on account of high spectral resolution, we perform unsupervised clustering by hierarchical non-negative matr...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملMetaphor Identification Using Verb and Noun Clustering
We present a novel approach to automatic metaphor identification in unrestricted text. Starting from a small seed set of manually annotated metaphorical expressions, the system is capable of harvesting a large number of metaphors of similar syntactic structure from a corpus. Our method is distinguished from previous work in that it does not employ any hand-crafted knowledge, other than the init...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013